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a b s t r a c t 

We propose a local tree-structured low-rank representation (TS-LRR) model to detect salient objects un- 

der the complicated background with diverse local regions, which is problematic for most low-rank ma- 

trix recovery (LRMR) based salient object detection methods. We first impose a local tree-structured low- 

rank constraint on the representation coefficients matrix to capture the complicated background. Specifi- 

cally, a primitive background dictionary is constructed for TS-LRR to promote its background representa- 

tion ability, and thus enlarge the gap between the salient objects and the background. We then impose a 

group-sparsity constraint on the sparse error matrix with the intention to ensure the saliency consistency 

among patches with similar features. At last, a foreground consistency is introduced to identically high- 

light the distinctive regions within the salient object. Experimental results on three public benchmark 

datasets demonstrate the effectiveness and superiority of the proposed model over the state-of-the-art 

methods. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Visual saliency aims at identifying salient regions, at which hu-

ans may fixate [1] . As an important branch of visual saliency,

alient object detection focuses on uniformly highlighting the en-

ire salient objects in a natural image, which is usually a pre-

rocessing step of many computer vision tasks, such as object seg-

entation [2] , image retrieval [3,4] , image categorization [5] and

ecognition [6,7] . 

Recently, low-rank matrix recovery (LRMR) technique has been

pplied to saliency detection [8,9] as a result of its promising

erformance. These methods generally presume that the salient

bjects only occupy small proportion of the whole image, and

he features of the background lie in a low-dimensional subspace.

herefore, they usually employ different LRMR techniques to de-

ompose the feature matrix of the input image into two parts: the

ow-rank part and the sparse noise part (i.e., reconstruction errors),

here the latter part is utilized to construct a saliency measure for

he detection of salient objects within the input image. Although

he preliminary results of LRMR based methods look promising,
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hey struggle to handle more realistic scenarios, where the salient

bjects are usually surrounded by complex backgrounds. In this

aper, a local tree-structured low-rank (TS-LRR) model is proposed

or salient object detection to deal with the above situation. 

A typical state-of-the-art LRMR based salient object detec-

ion method relies on the structured matrix decomposition (SMD)

odel [10] , which formulates the task of salient object detection

s a problem of LRMR and structured sparse matrix decomposi-

ion. Specifically, two structural regularizations are employed in

he SMD model. One is a tree-structured sparsity-inducing regu-

arization, enforcing patches from the same group to have similar

aliency values. The other one is a Laplacian regularization, enlarg-

ng the gaps between salient objects and the background in the

eature space. 

However, such method suffers from several problems. First,

MD imposes a global low-rank constraint on the feature matrix

o capture background, which is valid only for simple background

ut not for complicated one with distinctive regions. As shown in

he first three rows of Fig. 1 (b), some local background regions are

istakenly labeled as salient objects when directly imposing such

 global low-rank constraint. This is due to the fact that these lo-

al background regions are distinct from most of the whole back-

round regions. 

https://doi.org/10.1016/j.patcog.2019.03.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.03.023&domain=pdf
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Fig. 1. Superiority of the proposed method over SMD. (a) Images; (b) Salient re- 

gions detected by SMD; (c) Detected results obtained by our method; (d) Ground 

Truth. 
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Secondly, the Laplacian regularization adopted by SMD as-

sumes two adjacent superpixels with similar appearance to have

similar saliency values. As a result, the foreground superpixels with

similar appearances will possess similar saliency values. Con-

versely, the foreground superpixels with distinctive appearances

will be assigned to different saliency values, which damages the

foreground uniformity. For example, as shown in the last two rows

of Fig. 1 (b), distinctive regions within the same foreground object

are assigned to different saliency values, thus leading to poor fore-

ground uniformity. 

Finally, from theory perspective, LRMR can be interpreted as

a special case of the low-rank representation (LRR) model with

an orthogonal basis dictionary. For those images with complicated

scenes, such a constraint dictionary does not seem to represent

their background regions appropriately. Therefore, the salient ob-

jects may not be well separated from the background. 

In order to address the problems mentioned above, we present

a local tree-structured low-rank representation (TS-LRR) model,

which is based on LRR rather than LRMR, for salient object detec-

tion in this paper. Using TS-LRR allows us to formulate the salient

object detection to a joint low-rank representation and spar-

sity pursuit problem. The entire algorithm is carried out in four

steps. 

First, a primitive background dictionary is introduced to en-

hance the background representation ability of TS-LRR. The pro-

posed background dictionary is constructed by using the coarse

saliency detection results from a simply modified VGG16 network

[11] . Secondly, a local tree-structured low-rank constraint, instead

of a global one, is imposed on the representation coefficient ma-

trix to better capture the low-rankness of complicated background

regions. Specifically, the input image is segmented into an index

tree with multiple layers, each of which contains a few groups.

Every group is composed of several superpixels with similar fea-

tures and thus possesses better low-rankness than the entire im-

age. Thirdly, similar to SMD, a group-sparsity constraint is imposed

on the reconstruction errors matrix to ensure the saliency consis-

tency among superpixels with similar features. Finally, a local spa-

tial consistency, i.e., foreground consistency, is performed among

potential salient patches (or superpixels) to get better uniformity
nd completeness of the salient objects. This is achieved by intro-

ucing a Laplacian regularization on the sparse errors matrix in the

roposed model. Such regularization enforces those patches within

he potential salient foregrounds to be similar in saliency values

ven if they have different appearances, as shown in the last two

ows of Fig. 1 (c). Revealed by the results, our model is capable of

uppressing the background regions even for those images with

omplex scenes (as shown in the first two rows of Fig. 1 (c)). As

ell, the proposed method enhances the uniformity and complete-

ess of the detected salient objects (as shown in the last two rows

f Fig. 1 (c)). 

In summary, the main contributions of this paper are as fol-

ows: 

1) Instead of using a global low-rank constraint as in [10] , we pro-

posed a local tree-structured low-rank representation (TS-LRR)

model for salient object detection, which is able to capture the

complicated background regions. 

2) The foreground consistency within potential foreground regions

is considered to achieve satisfactory uniformity and complete-

ness of the detected salient objects, which is extremely useful

when those salient objects are with diverse types of regions. 

3) A primitive background dictionary is constructed for the pro-

posed model, promoting the background representation ability

of TS-LRR. 

The rest of this paper is organized as follows. Section 2 reviews

he most related works. Section 3 describes the proposed model in

etail. Experiments are conducted on three benchmarks to evalu-

te the validity and superiority of our work in Section 4 . Finally,

ection 5 concludes the paper. 

. Related work 

In the past few years, numerous methods have been proposed

or salient object detection. In this section, we will review the most

elated works, including LRMR based and LRR based salient object

etection methods. Besides, deep convolutional neural networks

CNNs) have been successfully applied for salient object detection

nd achieved amazing performance, which will also be reviewed in

his section. 

.1. LRMR based salient object detection 

LRMR have attracted more and more attention of researchers in

any fields of science and engineering, such as visual classification

12] and face recognition [13] . LRMR theory was first introduced to

aliency detection in [14] due to its efficiency. Since then, various

xtensions have been developed for salient object detection. Gener-

lly, these LRMR based methods assume that an image can be rep-

esented as a low-rank part (i.e., background) plus a sparse salient

art (i.e., foreground). For example, a unified LRMR model was

roposed for saliency detection by integrating higher-level knowl-

dge and low-level features in [9] . A novel diversity induced ma-

rix decomposition model was proposed for salient object detec-

ion in [15] , where a S 1/2 regularizer was introduced to constraint

he background part. Recently, some spatial relations among image

egions have also been taken into account in the LRMR models.

specially, Peng et al. [10] proposed a structured matrix decom-

osition model, in which a tree-structured sparsity-inducing con-

traint was employed to detect the salient objects, and a Laplacian

egularization was employed to enlarge the gaps between salient

bjects and background in the feature space. 

.2. LRR based salient object detection 

Recently, low-rank representation (LRR) has been applied in

alient object detection owing to its favorable efficiency. Unlike
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RMR that directly decomposes a matrix into two parts, LRR uses a

ictionary to decompose an input image (or its feature matrix) into

 low-rank part (i.e., background) and a sparse error part (i.e., fore-

round), where the sparse error part is usually employed to extract

he salient objects. For example, Lang et al. [8] incorporated mul-

iple types of features in a multi-task sparsity pursuit model for

aliency detection. Zhao et al. [16] proposed a new low rank learn-

ng method which constructs the low rank representation matrix

tilizing label information to obtain a more informative graph. In

ur previous work [17] , a unified low-rank representation model,

ombined with the Laplacian sparse subspace clustering, was pre-

ented for saliency detection, where a cluster-level saliency mea-

ure and a superpixel-level one were integrated to compute the

nal saliency values. 

.3. CNNs based salient object detection 

More recently, deep convolution neural networks (CNNs) have

een successfully applied to detect salient objects from image.

ang et al. [18] proposed to detect saliency via local estimation

nd global search based on CNNs. Alternatively, Li and Yu [19] em-

loyed CNNs to extract multi-scale deep features from the input

mage for saliency detection. In [20] , a CNNs-based multi-scale

ulti-path fusion network was presented for RGB-D salient object

etection. 

To sum up, most existing LRMR and LRR based methods gener-

lly work for simple scenes. However, when background regions

re complicated or objects contain diverse regions, some unde-

irable results may be obtained, such as poor foreground uni-

ormity and background suppression. Those CNNs based meth-

ds perform slightly better than the traditional methods, but

hey still suffer from the problems like blurry salient object

oundaries. 
Fig. 2. Diagram of the proposed sa
. Proposed salient object detection model 

The diagram of the proposed method is shown in Fig. 2 . The

etails of the proposed model will be elaborated below. 

.1. Feature extraction and index-tree construction 

In this section, the input image is first over-segmented into

 number of superpixels and features of each superpixel are ex-

racted. Then, an index-tree structure is constructed for the input

mage. 

.1.1. Superpixel over-segmentation and feature extraction 

In this paper, a simple iterative superpixel clustering (SLIC) al-

orithm [21] is adopted to over-segment an input image I into N

uperpixels { p i | i = 1 , 2 , . . . , N } , where N is experimentally set to

00. Following [9] , the features of the input image in this paper

over the RGB color as well as the hue and saturation components

5 dimensions), steerable pyramids (12 dimensions) [22] and Ga-

or filter (36 dimensions) [23] . The three types of features can

apture different characteristics of an image and are complemen-

ary to each other when applied to salient object detection, which

ill be shown in the later experimental part. The color features

an well capture the appearance of an image, while the other two

ypes pay more attention to explore the textures of an image. The

eatures of each superpixel are obtained by averaging those of its

ixels, yielding the feature matrix X = [ x 1 , x 2 , . . . , x N ] ∈ R m ×N (here

 = 53 ), where x i denotes the feature vector of a superpixel p i . 

.1.2. Index-tree generation 

In many complex cases, an image may contain many regions

ith different types of features (or spatial appearances). To better

apture these regions, we propose to perform saliency detection on

n index tree with a few superpixel clusters in each layer. Similar
lient object detection model. 
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Fig. 3. Visualization of a 4-layer index tree structure. The regions that are marked by the same color represent one node in the index tree. 
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to that in [10] , an index-tree of an input image can be generated

as follows. 

Specifically, given the superpixels { p i | i = 1 , 2 , . . . , N } , an affinity

of each adjacent superpixel pair is first computed by 

ω 

tree 
i, j = 

⎧ ⎨ 

⎩ 

exp 

(
−‖ 

x i −x j ‖ 

2 

2 σ 2 

)
, if 

(
p i , p j 

)
∈ �

0 , otherwise 

, (1)

where � denotes the set of spatially adjacent superpixel pairs. σ is

experimentally set to 0.05. According to the affinity computed by

Eq. (1) , a graph-based image segmentation algorithm [24] is then

applied for the input image to produce a sequence of layers con-

taining scale-increasing groups. In each layer, a group corresponds

to one node at the corresponding layer. The scale is controlled by a

layer-dependent threshold θ i . Finally, a hierarchical fine-to-coarse

segmentation { G 

i 
j 
} ( i = 1 , 2 , . . . , d; j = 1 , 2 , . . . , n i ) of the input im-

age is obtained. Here, d denotes the depth of the index tree. n i de-

notes the total number of nodes at the i th layer in the index tree.

G 

i 
j 

is the j th node at the i th layer, which contains a set of similar

superpixels. Fig. 3 shows a visualized example of a 4-layer index

tree for an input image. 

3.2. Proposed salient object detection model 

As discussed in Section 3.1 , the superpixels within the sub-

region G 

i 
j 

have similar features and thus their feature matrices

should have high low-rankness. As a result of this observation, a

local low-rank constraint on the sub-region G 

i 
j 
, rather than a global

low-rank constraint on the entire image, will better capture the

complicated background with distinctive sub-regions. 

As well, under the same dictionary, the superpixels within the

sub-region G 

i 
j 

should have similar reconstruction errors and thus

have similar saliency values. As discussed in [10] , this may be

achieved by imposing a local consistency among the superpix-

els within the same group via a group-sparsity constraint on the

sparse error matrix, which enforces the superpixels within G 

i 
j 

to

identically have similar errors. Unfortunately, those foreground su-

perpixels with different appearances will be easily assigned to dif-

ferent saliency values by just considering the local consistency

among the superpixels within the same group, which in turn will

damage the foreground uniformity. 

In fact, all superpixels within the same object are expected to

have similar saliency values even though they may have differ-

ent features (or spatial appearances). For that, a foreground consis-

tency is further introduced to ensure the foreground uniformity in

this paper. This can be achieved by incorporating another Laplacian

regularization on the sparse error matrix in the proposed salient

object detection model. 

Based on the above observations, the proposed salient ob-

ject detection problem can be solved by the following local tree-

structured low-rank representation (TS-LRR) model: 
min 

Z , E 

d ∑ 

i =1 

n i ∑ 

j=1 

∥∥∥Z G i 
j 

∥∥∥
∗
+ α

d ∑ 

i =1 

n i ∑ 

j=1 

υ i 
j 

∥∥∥E G i 
j 

∥∥∥
∞ 

+ βT r 
(
EL E 

T 
)
, 

s.t. X = DZ + E , (2)

here Z ∈ R M × N and E ∈ R m × N are the representation coefficient

atrix and sparse error matrix, respectively. Z 

G i 
j 

and E 

G i 
j 

denote

he sub-matrix of Z and E corresponding to the sub-region G 

i 
j 
, re-

pectively. ‖ Z 

G i 
j 
‖ ∗ denotes the nuclear norm of the matrix Z 

G i 
j 

and

s defined as the sum of the singular values of the matrix Z 

G i 
j 
.

 E 

G i 
j 
‖ ∞ 

refers to the 	 ∞ 

-norm of the matrix E 

G i 
j 

and is defined

s the maximum absolute error value of regions within the group

 

i 
j 
. D ∈ R m × M is a primitive background dictionary, which will be

iscussed in the following Section 3.2.1 . α and β are two positive

rade-off parameters and are experimentally set to 1 and 0.1, re-

pectively. 

The first term 

d ∑ 

i =1 

n i ∑ 

j=1 

‖ Z 

G i 
j 
‖ 

∗
in Eq. (2) involves a local tree-

tructured low-rank constraint to describe the intrinsic low-

ankness within each group G 

i 
j 
, which helps to capture the compli-

ated background. In order to improve the background representa-

ion ability of the model, a primitive background dictionary D is

onstructed for the proposed TS-LRR model. 

The second term 

d ∑ 

i =1 

n i ∑ 

j=1 

υ i 
j 
‖ E 

G i 
j 
‖ 

∞ 

is a structured group sparsity

egularization on the sparse error matrix, in which the 	 ∞ 

-norm

s employed to enforce the superpixels within the same group to

ossess identical saliency values as in [10] . υ i 
j 
( υ i 

j 
≥ 0 ) refers to the

eight associated to each sub-region G 

i 
j 

and is computed based

n some high-level priors, including location, color and background

riors as in [10] . 

Finally, the Laplacian regularization term T r( EL E 

T ) is intro-

uced to enforce the foreground consistency within potential fore-

round regions, which will be further discussed in the following

ection 3.2.2 . Jointly engaging the above three terms ensures fore-

round uniformity and background suppression in complex scenes.

In the following contents, we will discuss the construction of

he primitive background dictionary D and the Laplacian regular-

zation term T r( EL E 

T ) in detail. 

.2.1. Construction of the primitive background dictionary 

In order to improve the background representation ability of

S-LRR, a primitive background dictionary is employed in the pro-

osed model, which is constructed by using the coarse detection

esults from the VGG16 network [11] . 

VGG16 is an important backbone for deep learning based com-

uter vision tasks, such as image classification [11] . Recently, it

as been utilized for salient object detection [25–27] and achieved

n amazing improvement. Here, we simply modify the VGG16 ar-

hitecture by removing the last three fully connected layers and

dding five deconvolution layers with strides of 2 to increase

he resolution of the saliency map. As shown in Fig. 4 (b), the
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Fig. 4. Illustrations of the proposed primitive background dictionary. (a) Images; 

(b) Coarse saliency maps obtained by the simply modified VGG16 network; (c) 

Proposed primitive background dictionaries; (d) Traditional background dictionaries 

based on the boundary prior [28] . 
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Fig. 5. Superpixel connections within the potential foreground regions. Each poten- 

tial foreground superpixel is connected with all the other potential ones. 
imply modified VGG16 produces a coarse saliency map, which can

ccurately locate most of foregrounds. The coarse saliency score

 VGG ( p i ) for each superpixel p i is obtained by averaging the saliency

alues of those pixels within the superpixel p i . Here, F VGG ( p i ) is

ormalized to[0, 1] by using a linear normalization method. 1 Ac-

ordingly, the background probability of each superpixel is ob-

ained by 

 VGG ( p i ) = 1 − F VGG ( p i ) . (3) 

A higher value of B VGG ( p i ) indicates that the superpixel p i is

ore likely to be a background region. As shown in Fig. 4 (c), those

uperpixels whose background probabilities are larger than a pre-

efined threshold T bg (is experimentally set to 0.8 in this paper)

re selected to construct the primitive background dictionary, i.e.,

 = [ x i 1 , x i 2 ,..., x i k ,..., x i M ] ∈ R m ×M , where M denotes the number of

elected superpixels. x i k denotes the feature vector of superpixel

p i k with B VGG ( p i k ) ≥ T bg . The remaining superpixels will be seen as

he potential foreground ones in this paper, resulting in the poten-

ial foreground regions. 

The proposed primitive background dictionary is different from

he traditional background dictionary, which is assumed to be

he image boundaries [28] . As illustrated in the first two rows of

ig. 4 (d), those traditional dictionaries based on image boundaries

enerally cover parts of the background regions. As shown in the

ast row of Fig. 4 (d), some foreground regions touching image bor-

ers will also be mistaken as background dictionary atoms. Dif-

erently, the proposed primitive background dictionaries can more

ccurately locate most background regions, even for those images

ith foreground regions touching boundaries, which is depicted in

he last row of Fig. 4 (c). 

.2.2. Foreground consistency 

In most cases, there exist diverse types of regions with differ-

nt appearances within the same salient object. These regions will

ave different reconstruction errors under the same pre-defined

ictionary. Thus, they are likely to be assigned with different

aliency values, leading to poor foreground uniformity. In order to

ddress this problem, we involve a Laplacian regularization, i.e., the

ast term in Eq. (2) , in the objective function for the foreground

onsistency. Doing so ensures the superpixels within the potential

oreground regions to have identically high saliency values even if
1 Given a set of data � and a data instance x ∈ �, its normalized value x ′ is com- 

uted by x ′ = ( x − x min ) / ( x max − x min ) , where x max and x min are the maximum and 

inimum values in the data set �, respectively. It is noted that this normalization 

s used throughout the whole paper. 

F

s

w

s

T

hey possess different appearances. The Laplacian regularization in

q. (2) is specifically defined as 

 r 
(
EL E 

T 
)

= 

1 

2 

N ∑ 

i, j=1 

∥∥e i − e j 
∥∥2 

2 
ω 

f c 
i j 

, (4) 

 

f c 
i j 

= 

{
1 , if p i and p j are both potential foreground superpixles 
0 , otherwise 

,

(5) 

here e i denotes the i th column of the sparse error matrix E .

 

f c 
i j 

represents the similarity between the superpixels p i and p j . In

q. (4) , the Laplacian matrix L is defined by L = F f c − W 

f c , where

 

fc ∈ R N × N is a diagonal degree matrix with its i th diagonal element

f 
f c 

i,i 
= 

∑ 

j ω 

f c 
i j 

, and the affinity matrix W 

fc ∈ R N × N is constructed

ith its ( i, j )th entry as ω 

f c 
i j 

. 

As illustrated in Fig. 5 , each superpixel is connected with all

he other ones within the potential foreground regions. Suppose

hat the superpixels p i and p j have similar reconstruction errors,

hey will be assigned to similar saliency values by setting ω ij to

 if they both belong to the potential foreground regions. That is

o say, all superpixels belonging to the potential foreground will

e given similar saliency values under our consistency constraint,

o matter if the foreground is formed by diverse regions. As a re-

ult, the proposed foreground consistency can achieve better uni-

ormity for the salient objects, especially for those salient objects

ontaining diverse regions, than the traditional spatially-adjacent

onsistency [29,30] . This will be verified in the later experimental

art. 
ig. 6. Detection results obtained by the modified VGG16 network and different 

aliency measures in our proposed method. (a) Images; (b) Modified VGG16 net- 

ork; (c) Saliency measure based on representation coefficients; (d) Saliency mea- 

ure based on reconstruction errors; (e) Optimized saliency measure; (f) Ground 

ruth. 
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Algorithm 1 

Optimization of the proposed model using ADM. 

Input: Data matrix X ∈ R m × N , dictionary D ∈ R m × M , parameters α and β , index tree { G i 
j 
} ( i = 1 , 2 , . . . , d; j = 1 , 2 , . . . , n i ) , and la yer node weights υ i 

j 
. 

Output: Z and E . 

Initialization: Z 0 = 0 , E 0 = 0 , J 0 = 0 , H 

0 = 0 , Y 0 1 = Y 0 2 = Y 0 3 = 0 , μ0 = 10 −6 , μmax = 10 30 , ε = 10 −8 , ρ = 1 . 1 , k = 0 . 

While not converged do 

(1) Fix the others and update J using Eq. (A3) 

(2) Fix the others and update Z using Eq. (A5) 

(3) Fix the others and update H using Eq. (A7) 

(4) Fix the others and update E using Eq. (A9); 

(5) Update the multipliers Y 1 , Y 2 and Y 3 : 

Y k +1 
1 

= Y k 1 + μk ( X − D Z k +1 − E k +1 ) , Y k +1 
2 

= Y k 2 + μk ( Z k +1 − J k +1 ) , Y k +1 
3 

= Y k 3 + μk ( E k +1 − H 

k +1 ) ; 

(6) Update μ: 

μk +1 = min ( ρμk , μmax ) ; 

(7) Update k : 

k = k + 1 ; 

(8) Check the convergence conditions: 

‖ X − DZ − E ‖ ∞ < ε & ‖ Z − J ‖ ∞ < ε & ‖ E − H ‖ ∞ < ε; 

End while 
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3.3. Optimization of the proposed model 

The proposed model in Eq. (2) is a convex optimization prob-

lem, and can be efficiently solved by using the alternating direc-

tion method (ADM) [31] . To this end, we introduce two auxiliary

variable J and H to make the objective function separable. Then,

Eq. (2) is recast as 

min 

Z , E 

d ∑ 

i =1 

n i ∑ 

j=1 

∥∥∥J G i 
j 

∥∥∥
∗
+ α

d ∑ 

i =1 

n i ∑ 

j=1 

υ i 
j 

∥∥∥E G i 
j 

∥∥∥
∞ 

+ βT r 
(
HL H 

T 
)

s.t. X = DZ + E , Z = J , E = H 

. (6)

After introducing three Lagrangian multipliers Y 1 , Y 2 and Y 3 

to remove the equality constraints, the optimization model in

Eq. (6) can be solved by minimizing the following augmented La-

grangian function L 

L ( Z , E , J , H , Y 1 , Y 2 , Y 3 , μ) 

= 

d ∑ 

i =1 

n i ∑ 

j=1 

∥∥∥J G i 
j 

∥∥∥
∗
+ α

d ∑ 

i =1 

n i ∑ 

j=1 

υ i 
j 

∥∥∥E G i 
j 

∥∥∥
∞ 

+ βT r 
(
HL H 

T 
)

+ 〈 Y 1 , X − DZ − E 〉 + 〈 Y 2 , Z − J 〉 + 〈 Y 3 , E − H 〉 
+ 

μ

2 

‖ 

X − DZ − E ‖ 

2 
F + 

μ

2 

‖ 

Z − J ‖ 

2 
F + 

μ

2 

‖ 

E − H ‖ 

2 
F , (7)

where μ> 0 is a penalty parameter. 〈 A, B 〉 denotes the Euclidean

inner product of matrices A and B . Clearly, this problem becomes

unconstrained, and can be alternately minimized with respect to
Fig. 7. PR and F-measure curves obtained by the simply modified
, E, J and H . Algorithm 1 summarizes the optimization of Eq. (7) .

ore details can be seen in Appendix A . 

.4. Saliency map generation 

The sparse error matrix E and representation coefficient ma-

rix Z obtained by solving the model in Eq. (2) may contain cer-

ain salient information of each superpixel. As discussed in [16] ,

he representation coefficients Z (:, i ) (i.e., the i th column in Z ) re-

eal the similarity between the superpixel p i and the atoms in the

rimitive background dictionary D . Accordingly, the sparse errors

 (:, i ) (i.e., the i th column in E ) indicate the difference between

he superpixel p i and the atoms in D to some extent. Therefore,

iven the primitive background dictionary D , a background super-

ixel will have high absolute values of representation coefficients

nd low sparse errors. On the contrary, a foreground superpixel

ill have low absolute values of representation coefficients and

igh sparse errors. Therefore, in this paper, two saliency measures

re first defined based on the representation coefficient matrix Z

nd the sparse error matrix E , respectively. Then, these two mea-

ures are integrated via an optimization framework such that the

nal saliency score for each superpixel can be achieved. 

.4.1. Saliency measure based on the representation coefficients 

Under the pre-defined primitive background dictionary, the rep-

esentation coefficients Z (:, i ) measure the similarity between the
 VGG16 network and different saliency measures on ECSSD. 
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Fig. 8. Illustrations of parameters settings. 
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uperpixel p i and the background dictionary. Therefore, in this pa-

er, the 	 1 -norm of the vector Z (:, i ), i.e., ‖ Z (: , i ) ‖ 1 = 

M ∑ 

j=1 

| Z ( j, i ) | ,
s adopted to compute the background probability of the super-

ixel p i , i.e., B Z ( p i ) = ‖ Z (: , i ) ‖ 1 . As well, considering the coarse

ackground probability B VGG ( p i ) in Eq. (3) obtained by the simply

odified VGG16 network, the background probability B ( p i ) of the

uperpixel p i is further computed by 

 ( p i ) = λB 

′ 
Z ( p i ) + ( 1 − λ) B VGG ( p i ) , (8) 

here λ is a balance parameter and is experimentally set to 0.5

n this paper. B ′ 
Z 
( p i ) is the normalized version of B Z ( p i ) with the

ange of values in [0, 1]. Therefore, the representation coefficients

ased saliency measure Sal Z ( p i ) for superpixel p i are defined as 
a l Z ( p i ) = 1 − B ( p i ) . (9) a  
.4.2. Saliency measure based on reconstruction errors 

Generally, a superpixel will be more salient if it has lager recon-

truction errors under the same background dictionary. Consider-

ng that, the saliency measure Sal E ( p i ) of each superpixel p i based

n the reconstruction errors may be simplified to 

a l E ( p i ) = ‖ 

E ( : , i ) ‖ 1 . (10) 

Similarly, the obtained saliency values of all the superpixels

re also normalized to be in the range of [0, 1]. Higher Sal E ( p i )

ndicates that the superpixel p i is more likely to be a salient

ne. 

.4.3. Optimized saliency measure 

Given the two superpixel-level based saliency measures Sal Z ( p i )

nd Sal E ( p i ), the optimized saliency values { M sp ( p i ) | i = 1 , 2 , . . . , N }
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Fig. 9. Visual comparisons of different methods. 

 

 

ω  

w  

b  

c  
of all the superpixels are finally obtained by minimizing the fol-

lowing optimization model as in [30] 

N ∑ 

i =1 

(1 − Sa l Z ( p i )) ( M sp ( p i ) ) 
2 + 

N ∑ 

i =1 

Sa l E ( p i ) ( 1 − M sp ( p i ) ) 
2 

+ 

∑ 

i, j 

w 

sal 
i j 

(
M sp ( p i ) − M sp ( p j ) 

)2 
. (11)
The weight ω 

sal 
i j 

is defined as 

 

sal 
i j = exp 

( ∥∥x i − x j 

∥∥2 

2 

2 σ 2 

) 

+ μ, (12)

here σ is set to 0.05, which is the same as Eq. (1) . It should

e also noted that the parameter μ is a small constant (empiri-

ally set to 0.1) to regularize the optimization for cluttered image
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Fig. 10. PR curves, F-measure curves and average F-measure bars for (a) MSRA10K; (b) ECSSD; (c) DUT-OMRON. 

Fig. 11. Quantitative comparisons with two deep learning based methods on ECSSD. 

r  

e

∑

s  

q  

s

M

egions. As discussed in [32] , the introduction of μ is useful to

rase small noise for both background and foreground regions. 

Considering Eq. (9) , Eq. (11) can be recast as 

N 
 

i =1 

B ( p i ) ( M sp ( p i ) ) 
2 + 

N ∑ 

i =1 

Sa l E ( p i ) ( 1 − M sp ( p i ) ) 
2 

+ 

∑ 

i, j 

ω 

sal 
i j 

(
M sp ( p i ) − M sp ( p j ) 

)2 
. (13) 
Let M sp = [ M sp ( p 1 ) , M sp ( p 2 ) , . . . , M sp ( p N ) ] 
T be the optimized 

aliency values of an image. The objective function in Eq. (11) is

uadratic on M sp . Therefore, the optimization model is simply

olved by a closed-form solution as 

 sp = 

(
D 

sal 
diag − W 

sal + B diag + E diag 

)−1 (
E diag ∗ I c 

)
, (14) 
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Fig. 12. Visual comparisons with two deep learning based methods on ECSSD. 

Fig. 13. Superiority of TS-LRR over LRR. (a) Images; (b) Saliency maps based on the 

traditional LRR; (c) Saliency maps based on the proposed TS-LRR; (d) Ground Truth. 
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where ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

D 

sal 
diag 

= d iag 
{

d sal 
1 , d sal 

2 , . . . , d sal 
N 

}
, d sal 

i 
= 

∑ 

j 

ω 

sal 
i j 

W 

sal (i, j) = ω 

sal 
i j 

B diag = diag { B ( p 1 ) , B ( p 2 ) , . . . , B ( p N ) } 
E diag = diag { Sa l E ( p 1 ) , Sa l E ( p 2 ) , . . . , Sa l E ( p N ) } 

. (15)

In Eq. (14) , I c ∈ R N is a column vector with N elements, which

are all 1. 

Given the saliency value M sp ( p i ) of each superpixel, the saliency

value M pixel ( q ) of a pixel q is directly obtained by 

M pixel (q ) = M sp ( p i ) , if q ∈ p i . (16)

Fig. 6 illustrates the validity of the optimized saliency measure.

It can be easily observed that the optimized saliency measure in

Eq. (14) can accurately detect the salient objects with better fore-

ground uniformity and background suppression than the saliency

measure in Eq. (9) and the saliency measure in Eq. (10) . Similarly,

Fig. 7 2 also indicates that the optimized saliency measure achieves

better performance than the saliency measures based on the re-

construction errors and representation coefficients, respectively. 

As well, it can be seen from Fig. 6 that the modified VGG16 can

well locate the salient objects ( Fig. 6 (b)) but the boundaries of the

detected objects are very blurry. However, the other saliency mea-

sures ( Fig. 6 (c)–(e)) can better capture the object boundaries. Es-

pecially, the saliency measure based on representation coefficients

and the optimized saliency measure perform better than the mod-

ified VGG16, as shown in Fig. 7 . 
2 The metrics about PR and F-measure curves will be explained in the later ex- 

perimental part. 

 

t

.5. Computational complexity analysis 

Suppose that the data matrix X and dictionary D are with

he sizes of m × N and m × M (1 ≤ M ≤ N ), respectively. Then, the

oefficients matrix Z has size of M × N (1 ≤ M ≤ N ). The main com-

utational cost of Algorithm 1 is updating Z , which may require

omputing the product of three matrices. Therefore, the compu-

ational complexity of Algorithm 1 is about O ( rmM 

2 N ), where r is

he number of iterations until convergence. It demonstrates that

he number of dictionary atoms M impacts significantly on the

omputational complexity of the proposed method than the other

arameters. In the proposed method, M is about 50, and is far

maller than the total number of superpixels N (about 200). As a

esult of that, our model is computationally efficient. 

. Experiments and analysis 

In this section, we conduct a series of experiments on three

ublic benchmark datasets: MSRA10K [33] , ECSSD [34] and DUT-

MRON [35] . MSRA10K [33] contains 10,0 0 0 images with relatively

imple scenes and high contrast. ECSSD [34] has 10 0 0 images with

ultiple objects and structurally complex scenes. DUT-OMRON

35] includes 5168 images with different-size objects in complex

cenes. Apparently, DUT-OMRON [35] is more challenging for

alient object detection. 

In order to validate the effectiveness and superiority of the

roposed method, another 10 state-of-the-art methods, including

L [36] , CHS [34] , DSR [28] , SMD [10] , DCLC [37] , ULR [16] , MAP

38] , MIL [39] , MST [40] and TSG [41] , are also performed on the

ame datasets in this paper. In addition, we also consider two

eep learning based algorithms, i.e., BPDRR [42] and DSMT [43] ,

or comparison. For fair comparisons, we directly use the detec-

ion results (BL [36] , CHS [34] , DSR [28] , SMD [10] , DCLC [37] , ULR

16] , MIL [39] , MST [40] , TSG [41] , BPDRR [42] and DSMT [43] ) or

etection results obtained by the codes (MAP [38] ) published by

heir corresponding authors for comparisons. 

Moreover, following [43,44] , we use multiple widely used met-

ics to evaluate different methods objectively, including precision-

ecall curve, F-measure curve, average F-measure and mean abso-

ute error (MAE). 

Precision-Recall (PR) . Given a continuous saliency map S , we

onvert it to a binary mask B using a threshold. Then, its preci-

ion and recall are computed as precision = | B ∩ S | / | B | and recall =
 B ∩ S | / | S| , respectively, where | · | accumulates the non-zero entries

n a mask. The average precision/recall pairs on all the binary maps

re computed with different thresholds to plot the precision-recall

urve. 

F-measure . The F-measure is formulated by a weighted combi-

ation of Precision and Recall 

 measure = 

(
1 + β2 

)
precision × recall 

β2 × precision + recall 
. (17)

Here, we set β2 to 0.3 to emphasize the precision over recall.

 lot of F-measure values under different thresholds are computed

o plot the F-measure curve. 

Mean absolute error (MAE) . MAE reflects the average pixel-wise

bsolute difference between the saliency map and Ground Truth. 

AE = 

1 

W × H 

W ∑ 

x =1 

H ∑ 

y =1 

| S ( x, y ) − B ( x, y ) | . (18)

Here, W and H are the height and width of the image, respec-

ively. 
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Fig. 14. Performance comparisons of TS-LRR and LRR. 

Fig. 15. Illustrations of LRR models with different dictionaries. (a) Images; (b) Orthogonal basis (employed by LRMR); (c) Data themselves; (d) Boundary background dictio- 

nary; (e) The proposed primitive background dictionary; (f) Ground Truth. 
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A  
.1. Implementation 

.1.1. Parameters settings 

There are several important parameters in the proposed

ethod, including the number of superpixels N , the parameters α
nd β in Eq. (2) , and index-tree depth d . We set these important

arameters based on a series of experiments on ECSSD. Fig. 8 illus-

rates the selections of different parameters. It can be easily seen

rom Fig. 8 (a) that the proposed method achieves the best perfor-

ance when N is set to 200. Therefore, N is set to 200 in this pa-

er. Similarly, as illustrated in Fig. 8 (b), (c), and (d), α, β , and d are

et to 1, 0.1, and 4, respectively. 

.1.2. Training the simply modified VGG16 network 

The MSRA10K dataset that contains 10,0 0 0 images with high

ontrast is employed to train the modified VGG16 network. We

dopt the data augmentation technique by flipping all the train-

ng images horizontally. The corresponding weights in the mod-

fied VGG16 are initialized with the pretrained model of VGG16

11] . The weights in the other newly added layers are initialized

andomly with a truncated normal ( σ = 0 . 01 ) and the biases are

nitialized to 0. The stochastic gradient descent (SGD) algorithm is

dopted to train the modified VGG16 model with an initial learn-

ng rate of 10 10 by using the “fixed” learning policy. The momen-

um parameter is set to 0.9 and the weight decay is 0.0 0 05. The

rained model is used for all the three public test datasets. 
.2. Comparisons with state-of-the-art methods 

Fig. 9 shows the visual comparisons of different methods for

hose images with a single object, multiple objects, objects touch-

ng boundaries, complicated background, and similar appearance,

espectively. It can be found from Fig. 9 that our proposed method

s able to accurately detect the complete salient objects, while

ost of the others either just detect parts of the salient objects

r mistakenly label some backgrounds as salient regions. Specifi-

ally, for those images with a single object, the proposed method

an accurately extract the complete salient object with satisfactory

niformity. It can also suppress the background well. For those

mages with multiple objects, most of the state-of-the-art meth-

ds just detect parts of salient objects, as opposed to it, the pro-

osed method can completely highlight all of the salient objects.

or those images with objects touching boundaries, the foreground

arts touching image boundaries are still completely detected by

he proposed method, but are usually missed by the compared

ethods. For those images with complicated background, most of

tate-of-the-art methods fail to identify the salient objects, while

ur model accurately recognizes them. For those images with sim-

lar appearance, the proposed method successfully separates the

alient objects from the similar background, which is difficult for

he other methods. 

Fig. 10 provides quantitative comparisons of different methods.

s shown in Fig. 10 (a) and (b), it can be easily found that the
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Fig. 16. Performance of LRR models with different dictionaries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L  

t  

f  

t  

t  

b  

s  

F  

p  

g  

t  

s

4

t

 

c  

I  

(  

w  

t  

t  

l  

f  

c

proposed method performs the best on MSRA10K and ECSSD in

terms of the PR curves, F-measure curves, and average F-measure

bars. From Fig. 10 (c), it is clear that the proposed method is com-

petitive with TSG [41] and DSR [28] , and performs better than the

other methods on DUT-OMRON. 

4.3. Comparisons with deep learning based methods 

In this section, we compare the proposed algorithm with two

deep learning based methods, i.e., BPDRR [42] and DSMT [43] . Es-

pecially, the latter is based on CNNs. Figs. 11 and 12 show the

quantitative comparisons and visual comparisons, respectively. Ac-

cording to Fig. 11 , the proposed method performs better than BP-

DRR but worse than DSMT, which demonstrates that CNNs have

great potential for salient object detection. However, as shown

in Fig. 12 , DSMT often produces blurry object boundaries, which

can be well addressed by the proposed method. Moreover, the

proposed method is an unsupervised one, while both DSMT and

BPDRR are supervised algorithms, which require a large labeled

dataset for training. 

4.4. Experimental analysis of the proposed method 

4.4.1. Superiority of TS-LRR over LRR 

Fig. 13 illustrates the superiority of the proposed tree-

structured low-rank representation (TS-LRR) over the traditional

low-rank representation (LRR) for salient object detection. 3 For

those images with complicated background regions (e.g., the first

two rows of Fig. 13 ), the traditional LRR easily gets confused, which

can be well solved by the proposed TS-LRR. Furthermore, as illus-

trated in the last row of Fig. 13 , the proposed TS-LRR can even

accurately extract the foreground regions that are similar to the

background regions, while the traditional LRR wrongly label some

foreground regions as the non-salient ones (e.g., the wings of the

bird in the last row of Fig. 13 (b)). Similarly, it can be easily seen

from Fig. 14 that the proposed TS-LRR achieves much better per-

formance than the traditional LRR. 

4.4.2. Validity of the primitive background dictionary 

To evaluate the effectiveness of the proposed primitive back-

ground dictionary, we compare a few versions of LRR models with

different dictionaries, including orthogonal basis (employed by
3 For a fair comparison, we replace the TS-LRR term (i.e., the first term) in the 

optimization model in Eq. (2) with the traditional LRR term to obtain the saliency 

maps based on the traditional LRR. 

F

s

t

S

RMR), data themselves, boundary background dictionary [28] and

he proposed primitive background dictionary. It can be viewed

rom Fig. 15 that the dictionary using data themselves and the

wo background dictionaries ( Fig. 15 (c), (d) and (e)) performs bet-

er than the dictionary using orthogonal basis ( Fig. 15 (b)). The two

ackground dictionaries ( Fig. 15 (d) and (e)) get better background

uppression than the dictionary using data themselves ( Fig. 15 (c)).

urthermore, it can be easily found from Fig. 15 (e) and (d) that the

rimitive background dictionary ( Fig. 15 (e)) achieves better back-

round suppression and foreground prominence than the tradi-

ional background dictionary ( Fig. 15 (d)). Fig. 16 can also arrive at

imilar conclusions. 

.4.3. Superiority of the proposed foreground consistency over the 

raditional spatially-adjacent consistency 

Fig. 17 illustrates the superiority of the proposed foreground

onsistency over the traditional spatially-adjacent consistency [10] .

t can be easily seen that the introduction of the local consistency

 Fig. 17 (c) and d) is helpful for foreground uniformity. Compared

ith the traditional spatially-adjacent consistency ( Fig. 17 (c)),

he proposed foreground consistency ( Fig. 17 (d)) achieves bet-

er foreground uniformity and salient object prominence. Simi-

arly, Fig. 18 also demonstrates the superiority of the proposed

oreground consistency over the traditional spatially-adjacent

onsistency. 
ig. 17. Superiority of the proposed foreground consistency over the traditional 

patially-adjacent consistency. (a) Images; (b) Saliency maps without local consis- 

ency; (c) Saliency maps using the traditional spatially-adjacent consistency; (d) 

aliency maps using the proposed foreground consistency; (e) Ground Truth. 
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Fig. 18. Quantitative performance of different local consistency. 

Fig. 19. PR and F-measure curves of different combinations of features on DUT-OMRON. 

Fig. 20. Visual comparisons of different combinations of features. (a) Images; (b) Ground Truth; (c) Without Color; (d) Without Steerable; (e) Without Gabor; (f) 

Color + Gabor + Steerable. 
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.4.4. Impacts of different types of features 

As discussed in the previous Section 3.1.1 , three types of fea-

ures are employed in our proposed method, including color (the

GB color as well as the hue and the saturation components (5 di-

ensions)), steerable pyramids (12 dimensions), and Gabor filters

36 dimensions). In this subsection, we employ different types of

eatures in our proposed method to test the impact of each type of
eatures on the saliency detection results. Figs. 19 and 20 show the

isual and quantitative saliency detection results on DUT-OMRON

btained by the proposed method but with different types of fea-

ures, respectively. It can be easily found from Fig. 19 that the color

eatures make a large contribution to the performance. Although

he steerable pyramid features do not improve the quantitative

erformance to some extent, these features help to suppress those



132 Q. Zhang, Z. Huo and Y. Liu et al. / Pattern Recognition 92 (2019) 119–134 

Fig. 21. Some failure cases of our method. (a) Images; (b) TS-LRR; (c) Ground Truth. 
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backgrounds with complicated textures, as shown in Fig. 20 (d). Es-

pecially, as shown in Fig. 20 (f), the combination of three types of

features achieves better uniformity and completeness of the salient

objects. 

4.4.5. Failure cases 

Fig. 21 displays some failure examples for the proposed method.

These images in Fig. 21 contain much abundant background. More-

over, the salient objects in these images are too small to be recog-

nized from the confused background. Considering its powerful po-

tential, deep learning will be adopted to improve the performance

of the proposed method in the future. 

5. Conclusions 

In this paper, we have proposed a new salient object detection

model for those images with complicated backgrounds and diverse

local salient regions. Specifically, a local tree-structured low-rank

constraint is employed to capture the complicated background. A

foreground consistency is exploited to promote the foreground uni-

formity among the diverse local salient regions. However, the de-

tection of those salient objects that are too small or surrounded

by a large amount of complicated backgrounds seems to be a chal-

lenge for our proposed method. To address this problem, we will

integrate the deep features learned from CNNs in our proposed

method or integrate the idea of our proposed method in the CNNs

architecture in the future. Another possible future work is to ap-

ply our saliency detector to industrial applications, such as object

tracking [45–47] and instance-level object retrieval [48–50] . 
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Appendix A 

In this appendix, the update scheme for solving Eq. (7) in the

text is described in detail. 

1) Update J 

J k +1 = arg min 

J 

d ∑ 

i =1 

n i ∑ 

j=1 

∥∥∥J G i 
j 

∥∥∥
∗
+ 

〈
Y 

k 
2 , Z 

k − J 
〉
+ 

μk 

2 

∥∥Z 

k − J 
∥∥2 

F 

= arg min λ
d ∑ 

n i ∑ 

∥∥∥J G i 
j 

∥∥∥ + 

1 
2 

∥∥J − X J 

∥∥2 

F 

, (A1)
J i =1 j=1 ∗
here λ = 1 / μk , and X J = Z 

k + Y 

k 
2 
/ μk . The solution of each sub-

egion G 

i 
j 

is recast as follows: 

 

k +1 
G i 

j 

= arg min 

J 
G i 
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λ
∥∥∥J G i 

j 

∥∥∥
∗
+ 

1 

2 

∥∥∥∥J G i 
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− X J 

G i 
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∥∥∥∥
2 

F 

. (A2)

The solution to Eq. (A2) can be derived as [31] : 

 

k +1 
G i 

j 

= U diag 
({

( σi − τ ) + 
})

V 

T , (A3)

here ( U , �, V 

T ) = SV D ( X J 
G i 

j 

) . 

1) Update Z 

Z 

k +1 = arg min 

Z 

〈
Y 

k 
1 , X − DZ − E 

k 
〉
+ 

〈
Y 

k 
2 , Z − J k +1 

〉
+ 

μk 

2 

∥∥X − DZ − E 

k 
∥∥2 

F 
+ 

μk 

2 

∥∥Z − J k +1 
∥∥2 

F 

= arg min 

Z 

μk 

2 

∥∥∥∥X − DZ − E 

k + 

1 

μk 
Y 

k 
1 

∥∥∥∥
2 

F 

+ 

μk 

2 

∥∥∥∥Z − J k +1 + 

1 

μk 
Y 

k 
2 

∥∥∥∥
2 

F 

. (A4)

Taking the derivative of the objective function in Eq. (A4) , we

ave [31] : 

 

k +1 = 

(
D 

T D + I 
)−1 

(
D 

T 
(
X − E 

k 
)

+ J k +1 + 

1 

μk 

(
D 

T Y 

k 
1 − Y 

k 
2 

))
. (A5)

1) Update H 

H 

k +1 = arg min 

H 

βTr 
(
HL H 

T 
)

+ 

〈
Y 

k 
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k − H 

〉
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μk Y 
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3 

∥∥∥2 

F 

. 

(A6)

The solution of H 

k +1 in Eq. (A6) has a closed-form as in [31] : 

 

k +1 = 

(
μk E 

k + Y 

k 
3 

)(
2 βL + μk I 

)−1 
. (A7)

1) Update E 

 

k +1 = arg min 
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α
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here η = α/ ( 2 μk ) and X E = ( X − D Z 

k +1 + H 

k +1 + ( Y 

k 
1 

− Y 

k 
3 
) / μk ) / 2

he above problem can be solved by the hierarchical proximal

perator [23] : 
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. (A9)
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